- Published on
Range of Convolutional Neural Networks on Fashion-MNIST dataset
- Authors
- Name
- Danial Khosravi
- @danial_kh
Fashion MNIST is a drop-in replacement for the very well known, machine learning hello world, MNIST dataset. It has same number of training and test examples and the images have the same 28x28 size and there are a total of 10 classes/labels, you can read more about the dataset here : Fashion-MNIST
In this post we will be trying out different models and compare their results:
List of models
- 2 Layer Neural Netwoek
- CNN with 1 Convolutional Layer
- CNN with 3 Convolutional Layers
- VGG Like Model
- VGG Like Model With Batchnorm
Approach
I split the original training data into 80% training and 20% validation. This helps to see weather we're over-fitting on the training data and weather we should lower the learning rate and train for more epochs if validation accuracy is higher than training accuracy or stop over-training if training accuracy shift higher than the validation.
To be consistent here, all the models are initially trained for 10 epochs and another 10 epochs with a lower learning late. After the initial 20 epochs, I added data augmentation, which generates new training samples by rotating, shifting and zooming on the training samples, and trained for another 50 epochs.
Also, to avoid hot encoding the labels, I decided to use sparse_categorical_crossentropy
when compiling the models.
Observations
All the models achieved a higher accuracy after using data augmentation. Almost always use data augmentation!!
VGG Like Model With Batchnorm performed the best and achieved a accuarcy of 94% using data augmentation.
Fun Fact
If you uncomment the code in Drop-in Replacement you said? section, you'll be able to run all the models on MNIST instead of Fashion-MNIST. It is much easier to get +99.5% results on MNIST. However, as you can see by running the models on both datasets, it gets relatively harder to squeeze accuracy on the Fashion-MNIST dataset.
Required Libaries
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Lambda
from keras.layers import Conv2D, MaxPooling2D, BatchNormalization
from keras.optimizers import Adam
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from keras.preprocessing.image import ImageDataGenerator
import numpy as np
import pandas as pd
np.random.seed(12345)
%matplotlib inline
Using TensorFlow backend.
Download and Load Fashion-MNIST
batch_size = 512
train_images_path = keras.utils.get_file('train-images-idx3-ubyte.gz', 'https://raw.githubusercontent.com/zalandoresearch/fashion-mnist/master/data/fashion/train-images-idx3-ubyte.gz')
train_labels_path = keras.utils.get_file('train-labels-idx1-ubyte.gz', 'https://raw.githubusercontent.com/zalandoresearch/fashion-mnist/master/data/fashion/train-labels-idx1-ubyte.gz')
test_images_path = keras.utils.get_file('t10k-images-idx3-ubyte.gz', 'https://raw.githubusercontent.com/zalandoresearch/fashion-mnist/master/data/fashion/t10k-images-idx3-ubyte.gz')
test_labels_path = keras.utils.get_file('t10k-labels-idx1-ubyte.gz', 'https://raw.githubusercontent.com/zalandoresearch/fashion-mnist/master/data/fashion/t10k-labels-idx1-ubyte.gz')
def load_mnist(images_path, labels_path):
import os
import gzip
import numpy as np
with gzip.open(labels_path, 'rb') as lbpath:
labels = np.frombuffer(lbpath.read(), dtype=np.uint8,
offset=8)
with gzip.open(images_path, 'rb') as imgpath:
images = np.frombuffer(imgpath.read(), dtype=np.uint8,
offset=16).reshape(len(labels), 784)
return images, labels
X_train_orig, y_train_orig = load_mnist(train_images_path, train_labels_path)
X_test, y_test = load_mnist(test_images_path, test_labels_path)
X_train_orig = X_train_orig.astype('float32')
X_test = X_test.astype('float32')
X_train_orig /= 255
X_test /= 255
Drop-in Replacement you said?
As I said at the beginning, fashion MNIST is drop-in replacement for MNINT. In case you want to run all these models on MNIST and compare the results. Uncomment the next section and everything should work automatically.
# from keras.datasets import mnist
# (X_train_orig, y_train_orig), (X_test, y_test) = mnist.load_data()
# X_train_orig = X_train_orig.reshape(60000, 784)
# X_test = X_test.reshape(10000, 784)
# X_train_orig = X_train_orig.astype('float32')
# X_test = X_test.astype('float32')
# X_train_orig /= 255
# X_test /= 255
print(X_train_orig.shape)
print(y_train_orig.shape)
print(X_test.shape)
print(y_test.shape)
(60000, 784) (60000,) (10000, 784) (10000,)
from sklearn.model_selection import train_test_split
X_train, X_val, y_train, y_val = train_test_split(X_train_orig, y_train_orig, test_size=0.2, random_state=12345)
print(X_train.shape)
print(y_train.shape)
print(X_val.shape)
print(y_val.shape)
(48000, 784) (48000,) (12000, 784) (12000,)
plt.imshow(X_train[1, :].reshape((28, 28)))
2 Layer Neural Network
model = Sequential([
Dense(512, input_shape=(784,), activation='relu'),
Dense(128, activation = 'relu'),
Dense(10, activation='softmax')
])
model.summary()
Layer (type) Output Shape Param #
dense_1 (Dense) (None, 512) 401920
dense_2 (Dense) (None, 128) 65664
dense_3 (Dense) (None, 10) 1290
Total params: 468,874 Trainable params: 468,874 Non-trainable params: 0
model.compile(optimizer=Adam(lr=0.001),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
history = model.fit(X_train, y_train,
batch_size=batch_size,
epochs=20,
verbose=1,
validation_data=(X_val, y_val))
Train on 48000 samples, validate on 12000 samples Epoch 1/20 48000/48000 [==============================] - 1s - loss: 0.6354 - acc: 0.7800 - val_loss: 0.4209 - val_acc: 0.8569 Epoch 2/20 48000/48000 [==============================] - 0s - loss: 0.4120 - acc: 0.8564 - val_loss: 0.3947 - val_acc: 0.8657 Epoch 3/20 48000/48000 [==============================] - 0s - loss: 0.3717 - acc: 0.8675 - val_loss: 0.3657 - val_acc: 0.8750 Epoch 4/20 48000/48000 [==============================] - 0s - loss: 0.3400 - acc: 0.8776 - val_loss: 0.3263 - val_acc: 0.8866 Epoch 5/20 48000/48000 [==============================] - 0s - loss: 0.3181 - acc: 0.8855 - val_loss: 0.3122 - val_acc: 0.8871 Epoch 6/20 48000/48000 [==============================] - 0s - loss: 0.2965 - acc: 0.8933 - val_loss: 0.3192 - val_acc: 0.8876 Epoch 7/20 48000/48000 [==============================] - 0s - loss: 0.2855 - acc: 0.8953 - val_loss: 0.3082 - val_acc: 0.8907 Epoch 8/20 48000/48000 [==============================] - 0s - loss: 0.2728 - acc: 0.8992 - val_loss: 0.2893 - val_acc: 0.8978 Epoch 9/20 48000/48000 [==============================] - 0s - loss: 0.2608 - acc: 0.9052 - val_loss: 0.3087 - val_acc: 0.8871 Epoch 10/20 48000/48000 [==============================] - 0s - loss: 0.2501 - acc: 0.9067 - val_loss: 0.2865 - val_acc: 0.8967 Epoch 11/20 48000/48000 [==============================] - 0s - loss: 0.2392 - acc: 0.9117 - val_loss: 0.2930 - val_acc: 0.8967 Epoch 12/20 48000/48000 [==============================] - 0s - loss: 0.2289 - acc: 0.9161 - val_loss: 0.2985 - val_acc: 0.8953 Epoch 13/20 48000/48000 [==============================] - 0s - loss: 0.2251 - acc: 0.9173 - val_loss: 0.2922 - val_acc: 0.8960 Epoch 14/20 48000/48000 [==============================] - 0s - loss: 0.2124 - acc: 0.9214 - val_loss: 0.2962 - val_acc: 0.8964 Epoch 15/20 48000/48000 [==============================] - 0s - loss: 0.2017 - acc: 0.9253 - val_loss: 0.2751 - val_acc: 0.9038 Epoch 16/20 48000/48000 [==============================] - 0s - loss: 0.1966 - acc: 0.9270 - val_loss: 0.2858 - val_acc: 0.9011 Epoch 17/20 48000/48000 [==============================] - 0s - loss: 0.1874 - acc: 0.9309 - val_loss: 0.2918 - val_acc: 0.8989 Epoch 18/20 48000/48000 [==============================] - 0s - loss: 0.1841 - acc: 0.9312 - val_loss: 0.2920 - val_acc: 0.8984 Epoch 19/20 48000/48000 [==============================] - 0s - loss: 0.1812 - acc: 0.9338 - val_loss: 0.2831 - val_acc: 0.9004 Epoch 20/20 48000/48000 [==============================] - 0s - loss: 0.1673 - acc: 0.9381 - val_loss: 0.2984 - val_acc: 0.9013
score = model.evaluate(X_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Test loss: 0.357285452712 Test accuracy: 0.8879
CNN with 1 Convolutional Layer
img_rows = 28
img_cols = 28
input_shape = (img_rows, img_cols, 1)
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1)
X_val = X_val.reshape(X_val.shape[0], img_rows, img_cols, 1)
cnn1 = Sequential([
Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape),
MaxPooling2D(pool_size=(2, 2)),
Dropout(0.2),
Flatten(),
Dense(128, activation='relu'),
Dense(10, activation='softmax')
])
cnn1.compile(loss='sparse_categorical_crossentropy',
optimizer=Adam(lr=0.001),
metrics=['accuracy'])
cnn1.fit(X_train, y_train,
batch_size=batch_size,
epochs=10,
verbose=1,
validation_data=(X_val, y_val))
Train on 48000 samples, validate on 12000 samples Epoch 1/10 48000/48000 [==============================] - 1s - loss: 0.6535 - acc: 0.7764 - val_loss: 0.4212 - val_acc: 0.8563 Epoch 2/10 48000/48000 [==============================] - 0s - loss: 0.4004 - acc: 0.8595 - val_loss: 0.3474 - val_acc: 0.8813 Epoch 3/10 48000/48000 [==============================] - 0s - loss: 0.3477 - acc: 0.8769 - val_loss: 0.3211 - val_acc: 0.8893 Epoch 4/10 48000/48000 [==============================] - 0s - loss: 0.3228 - acc: 0.8848 - val_loss: 0.2988 - val_acc: 0.8969 Epoch 5/10 48000/48000 [==============================] - 0s - loss: 0.2998 - acc: 0.8940 - val_loss: 0.2789 - val_acc: 0.9033 Epoch 6/10 48000/48000 [==============================] - 0s - loss: 0.2865 - acc: 0.8975 - val_loss: 0.2782 - val_acc: 0.9018 Epoch 7/10 48000/48000 [==============================] - 0s - loss: 0.2721 - acc: 0.9030 - val_loss: 0.2709 - val_acc: 0.9053 Epoch 8/10 48000/48000 [==============================] - 0s - loss: 0.2654 - acc: 0.9036 - val_loss: 0.2531 - val_acc: 0.9102 Epoch 9/10 48000/48000 [==============================] - 0s - loss: 0.2534 - acc: 0.9083 - val_loss: 0.2538 - val_acc: 0.9063 Epoch 10/10 48000/48000 [==============================] - 0s - loss: 0.2481 - acc: 0.9094 - val_loss: 0.2823 - val_acc: 0.8995
cnn1.optimizer.lr = 0.0001
cnn1.fit(X_train, y_train,
batch_size=batch_size,
epochs=10,
verbose=1,
validation_data=(X_val, y_val))
Train on 48000 samples, validate on 12000 samples Epoch 1/10 48000/48000 [==============================] - 0s - loss: 0.2361 - acc: 0.9138 - val_loss: 0.2467 - val_acc: 0.9130 Epoch 2/10 48000/48000 [==============================] - 0s - loss: 0.2254 - acc: 0.9188 - val_loss: 0.2436 - val_acc: 0.9139 Epoch 3/10 48000/48000 [==============================] - 0s - loss: 0.2203 - acc: 0.9195 - val_loss: 0.2362 - val_acc: 0.9177 Epoch 4/10 48000/48000 [==============================] - 0s - loss: 0.2104 - acc: 0.9228 - val_loss: 0.2366 - val_acc: 0.9167 Epoch 5/10 48000/48000 [==============================] - 0s - loss: 0.2070 - acc: 0.9238 - val_loss: 0.2276 - val_acc: 0.9187 Epoch 6/10 48000/48000 [==============================] - 0s - loss: 0.1971 - acc: 0.9278 - val_loss: 0.2254 - val_acc: 0.9229 Epoch 7/10 48000/48000 [==============================] - 0s - loss: 0.1913 - acc: 0.9301 - val_loss: 0.2348 - val_acc: 0.9149 Epoch 8/10 48000/48000 [==============================] - 0s - loss: 0.1860 - acc: 0.9313 - val_loss: 0.2271 - val_acc: 0.9194 Epoch 9/10 48000/48000 [==============================] - 0s - loss: 0.1809 - acc: 0.9344 - val_loss: 0.2220 - val_acc: 0.9223 Epoch 10/10 48000/48000 [==============================] - 0s - loss: 0.1735 - acc: 0.9368 - val_loss: 0.2174 - val_acc: 0.9237
score = cnn1.evaluate(X_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Test loss: 0.250880071822 Test accuracy: 0.9123
Data Augmentation
gen = ImageDataGenerator(rotation_range=8, width_shift_range=0.08, shear_range=0.3,
height_shift_range=0.08, zoom_range=0.08)
batches = gen.flow(X_train, y_train, batch_size=batch_size)
val_batches = gen.flow(X_val, y_val, batch_size=batch_size)
cnn1.fit_generator(batches, steps_per_epoch=48000//batch_size, epochs=50,
validation_data=val_batches, validation_steps=12000//batch_size, use_multiprocessing=True)
Epoch 1/50 93/93 [==============================] - 7s - loss: 0.5429 - acc: 0.7988 - val_loss: 0.4489 - val_acc: 0.8303 Epoch 2/50 93/93 [==============================] - 6s - loss: 0.4493 - acc: 0.8327 - val_loss: 0.4163 - val_acc: 0.8443 Epoch 3/50 93/93 [==============================] - 6s - loss: 0.4383 - acc: 0.8365 - val_loss: 0.3987 - val_acc: 0.8533 Epoch 4/50 93/93 [==============================] - 6s - loss: 0.4167 - acc: 0.8440 - val_loss: 0.3855 - val_acc: 0.8594 Epoch 5/50 93/93 [==============================] - 6s - loss: 0.4039 - acc: 0.8486 - val_loss: 0.3835 - val_acc: 0.8585 Epoch 6/50 93/93 [==============================] - 6s - loss: 0.4013 - acc: 0.8498 - val_loss: 0.3762 - val_acc: 0.8633 Epoch 7/50 93/93 [==============================] - 6s - loss: 0.3855 - acc: 0.8555 - val_loss: 0.3643 - val_acc: 0.8633 Epoch 8/50 93/93 [==============================] - 6s - loss: 0.3817 - acc: 0.8575 - val_loss: 0.3545 - val_acc: 0.8700 Epoch 9/50 93/93 [==============================] - 6s - loss: 0.3739 - acc: 0.8602 - val_loss: 0.3565 - val_acc: 0.8693 Epoch 10/50 93/93 [==============================] - 6s - loss: 0.3698 - acc: 0.8611 - val_loss: 0.3494 - val_acc: 0.8706 Epoch 11/50 93/93 [==============================] - 6s - loss: 0.3654 - acc: 0.8619 - val_loss: 0.3487 - val_acc: 0.8697 Epoch 12/50 93/93 [==============================] - 6s - loss: 0.3572 - acc: 0.8653 - val_loss: 0.3448 - val_acc: 0.8737 Epoch 13/50 93/93 [==============================] - 6s - loss: 0.3552 - acc: 0.8671 - val_loss: 0.3333 - val_acc: 0.8791 Epoch 14/50 93/93 [==============================] - 6s - loss: 0.3552 - acc: 0.8667 - val_loss: 0.3485 - val_acc: 0.8702 Epoch 15/50 93/93 [==============================] - 6s - loss: 0.3513 - acc: 0.8693 - val_loss: 0.3348 - val_acc: 0.8756 Epoch 16/50 93/93 [==============================] - 6s - loss: 0.3461 - acc: 0.8700 - val_loss: 0.3273 - val_acc: 0.8807 Epoch 17/50 93/93 [==============================] - 6s - loss: 0.3456 - acc: 0.8706 - val_loss: 0.3333 - val_acc: 0.8774 Epoch 18/50 93/93 [==============================] - 6s - loss: 0.3386 - acc: 0.8745 - val_loss: 0.3257 - val_acc: 0.8785 Epoch 19/50 93/93 [==============================] - 6s - loss: 0.3349 - acc: 0.8761 - val_loss: 0.3180 - val_acc: 0.8811 Epoch 20/50 93/93 [==============================] - 6s - loss: 0.3331 - acc: 0.8757 - val_loss: 0.3175 - val_acc: 0.8848 Epoch 21/50 93/93 [==============================] - 6s - loss: 0.3321 - acc: 0.8757 - val_loss: 0.3268 - val_acc: 0.8753 Epoch 22/50 93/93 [==============================] - 6s - loss: 0.3303 - acc: 0.8770 - val_loss: 0.3149 - val_acc: 0.8836 Epoch 23/50 93/93 [==============================] - 6s - loss: 0.3238 - acc: 0.8791 - val_loss: 0.3114 - val_acc: 0.8845 Epoch 24/50 93/93 [==============================] - 6s - loss: 0.3235 - acc: 0.8791 - val_loss: 0.3020 - val_acc: 0.8903 Epoch 25/50 93/93 [==============================] - 6s - loss: 0.3251 - acc: 0.8783 - val_loss: 0.3100 - val_acc: 0.8843 Epoch 26/50 93/93 [==============================] - 6s - loss: 0.3219 - acc: 0.8817 - val_loss: 0.3054 - val_acc: 0.8884 Epoch 27/50 93/93 [==============================] - 6s - loss: 0.3183 - acc: 0.8805 - val_loss: 0.3007 - val_acc: 0.8931 Epoch 28/50 93/93 [==============================] - 6s - loss: 0.3146 - acc: 0.8823 - val_loss: 0.3076 - val_acc: 0.8871 Epoch 29/50 93/93 [==============================] - 6s - loss: 0.3089 - acc: 0.8833 - val_loss: 0.3043 - val_acc: 0.8881 Epoch 30/50 93/93 [==============================] - 6s - loss: 0.3140 - acc: 0.8841 - val_loss: 0.3013 - val_acc: 0.8866 Epoch 31/50 93/93 [==============================] - 6s - loss: 0.3087 - acc: 0.8843 - val_loss: 0.2933 - val_acc: 0.8901 Epoch 32/50 93/93 [==============================] - 6s - loss: 0.3108 - acc: 0.8820 - val_loss: 0.2974 - val_acc: 0.8953 Epoch 33/50 93/93 [==============================] - 6s - loss: 0.3064 - acc: 0.8871 - val_loss: 0.3004 - val_acc: 0.8903 Epoch 34/50 93/93 [==============================] - 6s - loss: 0.3055 - acc: 0.8859 - val_loss: 0.2916 - val_acc: 0.8930 Epoch 35/50 93/93 [==============================] - 6s - loss: 0.3047 - acc: 0.8862 - val_loss: 0.3002 - val_acc: 0.8890 Epoch 36/50 93/93 [==============================] - 6s - loss: 0.3006 - acc: 0.8880 - val_loss: 0.2881 - val_acc: 0.8953 Epoch 37/50 93/93 [==============================] - 6s - loss: 0.3063 - acc: 0.8856 - val_loss: 0.3006 - val_acc: 0.8888 Epoch 38/50 93/93 [==============================] - 6s - loss: 0.2984 - acc: 0.8874 - val_loss: 0.3068 - val_acc: 0.8862 Epoch 39/50 93/93 [==============================] - 6s - loss: 0.3032 - acc: 0.8859 - val_loss: 0.2894 - val_acc: 0.8939 Epoch 40/50 93/93 [==============================] - 6s - loss: 0.2996 - acc: 0.8883 - val_loss: 0.3023 - val_acc: 0.8871 Epoch 41/50 93/93 [==============================] - 6s - loss: 0.3003 - acc: 0.8876 - val_loss: 0.3014 - val_acc: 0.8899 Epoch 42/50 93/93 [==============================] - 6s - loss: 0.2933 - acc: 0.8894 - val_loss: 0.2886 - val_acc: 0.8928 Epoch 43/50 93/93 [==============================] - 6s - loss: 0.2939 - acc: 0.8890 - val_loss: 0.3088 - val_acc: 0.8851 Epoch 44/50 93/93 [==============================] - 6s - loss: 0.2952 - acc: 0.8878 - val_loss: 0.2854 - val_acc: 0.8960 Epoch 45/50 93/93 [==============================] - 6s - loss: 0.2923 - acc: 0.8910 - val_loss: 0.2846 - val_acc: 0.8964 Epoch 46/50 93/93 [==============================] - 6s - loss: 0.2891 - acc: 0.8917 - val_loss: 0.2928 - val_acc: 0.8920 Epoch 47/50 93/93 [==============================] - 6s - loss: 0.2903 - acc: 0.8898 - val_loss: 0.2829 - val_acc: 0.8981 Epoch 48/50 93/93 [==============================] - 6s - loss: 0.2877 - acc: 0.8917 - val_loss: 0.2863 - val_acc: 0.8967 Epoch 49/50 93/93 [==============================] - 6s - loss: 0.2903 - acc: 0.8896 - val_loss: 0.2831 - val_acc: 0.8978 Epoch 50/50 93/93 [==============================] - 6s - loss: 0.2848 - acc: 0.8930 - val_loss: 0.2858 - val_acc: 0.8968
score = cnn1.evaluate(X_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Test loss: 0.23108966648 Test accuracy: 0.9153
CNN with 3 Convolutional Layers
cnn2 = Sequential([
Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape),
MaxPooling2D(pool_size=(2, 2)),
Dropout(0.2),
Conv2D(64, kernel_size=(3, 3), activation='relu'),
MaxPooling2D(pool_size=(2, 2)),
Dropout(0.2),
Conv2D(128, kernel_size=(3, 3), activation='relu'),
Dropout(0.2),
Flatten(),
Dense(128, activation='relu'),
Dropout(0.2),
Dense(10, activation='softmax')
])
cnn2.compile(loss='sparse_categorical_crossentropy',
optimizer=Adam(lr=0.001),
metrics=['accuracy'])
cnn2.fit(X_train, y_train,
batch_size=batch_size,
epochs=10,
verbose=1,
validation_data=(X_val, y_val))
Train on 48000 samples, validate on 12000 samples Epoch 1/10 48000/48000 [==============================] - 1s - loss: 0.9809 - acc: 0.6365 - val_loss: 0.5820 - val_acc: 0.7757 Epoch 2/10 48000/48000 [==============================] - 1s - loss: 0.5837 - acc: 0.7796 - val_loss: 0.4740 - val_acc: 0.8273 Epoch 3/10 48000/48000 [==============================] - 1s - loss: 0.4999 - acc: 0.8146 - val_loss: 0.4217 - val_acc: 0.8484 Epoch 4/10 48000/48000 [==============================] - 1s - loss: 0.4506 - acc: 0.8331 - val_loss: 0.3986 - val_acc: 0.8590 Epoch 5/10 48000/48000 [==============================] - 1s - loss: 0.4136 - acc: 0.8469 - val_loss: 0.3570 - val_acc: 0.8728 Epoch 6/10 48000/48000 [==============================] - 1s - loss: 0.3802 - acc: 0.8588 - val_loss: 0.3243 - val_acc: 0.8816 Epoch 7/10 48000/48000 [==============================] - 1s - loss: 0.3668 - acc: 0.8646 - val_loss: 0.3143 - val_acc: 0.8849 Epoch 8/10 48000/48000 [==============================] - 1s - loss: 0.3488 - acc: 0.8702 - val_loss: 0.2980 - val_acc: 0.8918 Epoch 9/10 48000/48000 [==============================] - 1s - loss: 0.3339 - acc: 0.8766 - val_loss: 0.2879 - val_acc: 0.8955 Epoch 10/10 48000/48000 [==============================] - 1s - loss: 0.3243 - acc: 0.8804 - val_loss: 0.2809 - val_acc: 0.8990
cnn2.optimizer.lr = 0.0001
cnn2.fit(X_train, y_train,
batch_size=batch_size,
epochs=10,
verbose=1,
validation_data=(X_val, y_val))
Train on 48000 samples, validate on 12000 samples Epoch 1/10 48000/48000 [==============================] - 1s - loss: 0.3096 - acc: 0.8857 - val_loss: 0.2743 - val_acc: 0.9002 Epoch 2/10 48000/48000 [==============================] - 1s - loss: 0.2982 - acc: 0.8890 - val_loss: 0.2716 - val_acc: 0.8997 Epoch 3/10 48000/48000 [==============================] - 1s - loss: 0.2944 - acc: 0.8909 - val_loss: 0.2588 - val_acc: 0.9082 Epoch 4/10 48000/48000 [==============================] - 1s - loss: 0.2877 - acc: 0.8941 - val_loss: 0.2554 - val_acc: 0.9077 Epoch 5/10 48000/48000 [==============================] - 1s - loss: 0.2768 - acc: 0.8965 - val_loss: 0.2491 - val_acc: 0.9096 Epoch 6/10 48000/48000 [==============================] - 1s - loss: 0.2711 - acc: 0.8995 - val_loss: 0.2455 - val_acc: 0.9097 Epoch 7/10 48000/48000 [==============================] - 1s - loss: 0.2644 - acc: 0.9017 - val_loss: 0.2513 - val_acc: 0.9086 Epoch 8/10 48000/48000 [==============================] - 1s - loss: 0.2599 - acc: 0.9044 - val_loss: 0.2349 - val_acc: 0.9148 Epoch 9/10 48000/48000 [==============================] - 1s - loss: 0.2551 - acc: 0.9060 - val_loss: 0.2319 - val_acc: 0.9153 Epoch 10/10 48000/48000 [==============================] - 1s - loss: 0.2453 - acc: 0.9081 - val_loss: 0.2335 - val_acc: 0.9142
score = cnn2.evaluate(X_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Test loss: 0.257787227988 Test accuracy: 0.9062
Data Augmentation
cnn2.fit_generator(batches, steps_per_epoch=48000//batch_size, epochs=50,
validation_data=val_batches, validation_steps=12000//batch_size, use_multiprocessing=True)
Epoch 1/50 93/93 [==============================] - 7s - loss: 0.4677 - acc: 0.8254 - val_loss: 0.3842 - val_acc: 0.8568 Epoch 2/50 93/93 [==============================] - 6s - loss: 0.4257 - acc: 0.8413 - val_loss: 0.3541 - val_acc: 0.8660 Epoch 3/50 93/93 [==============================] - 6s - loss: 0.4153 - acc: 0.8453 - val_loss: 0.3463 - val_acc: 0.8733 Epoch 4/50 93/93 [==============================] - 6s - loss: 0.3991 - acc: 0.8506 - val_loss: 0.3464 - val_acc: 0.8717 Epoch 5/50 93/93 [==============================] - 6s - loss: 0.3878 - acc: 0.8551 - val_loss: 0.3366 - val_acc: 0.8730 Epoch 6/50 93/93 [==============================] - 6s - loss: 0.3780 - acc: 0.8588 - val_loss: 0.3250 - val_acc: 0.8806 Epoch 7/50 93/93 [==============================] - 6s - loss: 0.3791 - acc: 0.8592 - val_loss: 0.3206 - val_acc: 0.8789 Epoch 8/50 93/93 [==============================] - 6s - loss: 0.3718 - acc: 0.8615 - val_loss: 0.3215 - val_acc: 0.8813 Epoch 9/50 93/93 [==============================] - 6s - loss: 0.3691 - acc: 0.8623 - val_loss: 0.3182 - val_acc: 0.8836 Epoch 10/50 93/93 [==============================] - 6s - loss: 0.3601 - acc: 0.8652 - val_loss: 0.3113 - val_acc: 0.8838 Epoch 11/50 93/93 [==============================] - 6s - loss: 0.3546 - acc: 0.8660 - val_loss: 0.3052 - val_acc: 0.8872 Epoch 12/50 93/93 [==============================] - 6s - loss: 0.3539 - acc: 0.8680 - val_loss: 0.3009 - val_acc: 0.8883 Epoch 13/50 93/93 [==============================] - 6s - loss: 0.3437 - acc: 0.8707 - val_loss: 0.3040 - val_acc: 0.8858 Epoch 14/50 93/93 [==============================] - 6s - loss: 0.3463 - acc: 0.8689 - val_loss: 0.2934 - val_acc: 0.8889 Epoch 15/50 93/93 [==============================] - 6s - loss: 0.3468 - acc: 0.8702 - val_loss: 0.2987 - val_acc: 0.8901 Epoch 16/50 93/93 [==============================] - 6s - loss: 0.3376 - acc: 0.8729 - val_loss: 0.2883 - val_acc: 0.8935 Epoch 17/50 93/93 [==============================] - 6s - loss: 0.3380 - acc: 0.8738 - val_loss: 0.2931 - val_acc: 0.8932 Epoch 18/50 93/93 [==============================] - 6s - loss: 0.3338 - acc: 0.8760 - val_loss: 0.2919 - val_acc: 0.8910 Epoch 19/50 93/93 [==============================] - 6s - loss: 0.3357 - acc: 0.8749 - val_loss: 0.2833 - val_acc: 0.8953 Epoch 20/50 93/93 [==============================] - 6s - loss: 0.3305 - acc: 0.8776 - val_loss: 0.2789 - val_acc: 0.8959 Epoch 21/50 93/93 [==============================] - 6s - loss: 0.3311 - acc: 0.8757 - val_loss: 0.2913 - val_acc: 0.8944 Epoch 22/50 93/93 [==============================] - 6s - loss: 0.3299 - acc: 0.8770 - val_loss: 0.2860 - val_acc: 0.8914 Epoch 23/50 93/93 [==============================] - 6s - loss: 0.3234 - acc: 0.8789 - val_loss: 0.2869 - val_acc: 0.8956 Epoch 24/50 93/93 [==============================] - 6s - loss: 0.3294 - acc: 0.8776 - val_loss: 0.2874 - val_acc: 0.8915 Epoch 25/50 93/93 [==============================] - 6s - loss: 0.3222 - acc: 0.8796 - val_loss: 0.2835 - val_acc: 0.8950 Epoch 26/50 93/93 [==============================] - 6s - loss: 0.3160 - acc: 0.8819 - val_loss: 0.2751 - val_acc: 0.8989 Epoch 27/50 93/93 [==============================] - 6s - loss: 0.3160 - acc: 0.8837 - val_loss: 0.2840 - val_acc: 0.8929 Epoch 28/50 93/93 [==============================] - 6s - loss: 0.3195 - acc: 0.8794 - val_loss: 0.2767 - val_acc: 0.8956 Epoch 29/50 93/93 [==============================] - 6s - loss: 0.3144 - acc: 0.8839 - val_loss: 0.2840 - val_acc: 0.8968 Epoch 30/50 93/93 [==============================] - 6s - loss: 0.3145 - acc: 0.8811 - val_loss: 0.2778 - val_acc: 0.9019 Epoch 31/50 93/93 [==============================] - 6s - loss: 0.3121 - acc: 0.8837 - val_loss: 0.2781 - val_acc: 0.8992 Epoch 32/50 93/93 [==============================] - 6s - loss: 0.3076 - acc: 0.8851 - val_loss: 0.2711 - val_acc: 0.8990 Epoch 33/50 93/93 [==============================] - 6s - loss: 0.3139 - acc: 0.8833 - val_loss: 0.2679 - val_acc: 0.8989 Epoch 34/50 93/93 [==============================] - 6s - loss: 0.3143 - acc: 0.8815 - val_loss: 0.2708 - val_acc: 0.9010 Epoch 35/50 93/93 [==============================] - 6s - loss: 0.3055 - acc: 0.8855 - val_loss: 0.2700 - val_acc: 0.8994 Epoch 36/50 93/93 [==============================] - 6s - loss: 0.3062 - acc: 0.8864 - val_loss: 0.2654 - val_acc: 0.9036 Epoch 37/50 93/93 [==============================] - 6s - loss: 0.3021 - acc: 0.8865 - val_loss: 0.2655 - val_acc: 0.8998 Epoch 38/50 93/93 [==============================] - 6s - loss: 0.3119 - acc: 0.8831 - val_loss: 0.2629 - val_acc: 0.9020 Epoch 39/50 93/93 [==============================] - 6s - loss: 0.3003 - acc: 0.8877 - val_loss: 0.2636 - val_acc: 0.9029 Epoch 40/50 93/93 [==============================] - 6s - loss: 0.3012 - acc: 0.8873 - val_loss: 0.2561 - val_acc: 0.9063 Epoch 41/50 93/93 [==============================] - 6s - loss: 0.2985 - acc: 0.8885 - val_loss: 0.2719 - val_acc: 0.9000 Epoch 42/50 93/93 [==============================] - 6s - loss: 0.3029 - acc: 0.8868 - val_loss: 0.2680 - val_acc: 0.8973 Epoch 43/50 93/93 [==============================] - 6s - loss: 0.2943 - acc: 0.8905 - val_loss: 0.2607 - val_acc: 0.9025 Epoch 44/50 93/93 [==============================] - 6s - loss: 0.3025 - acc: 0.8880 - val_loss: 0.2619 - val_acc: 0.9014 Epoch 45/50 93/93 [==============================] - 6s - loss: 0.2945 - acc: 0.8889 - val_loss: 0.2552 - val_acc: 0.9069 Epoch 46/50 93/93 [==============================] - 6s - loss: 0.2989 - acc: 0.8878 - val_loss: 0.2603 - val_acc: 0.9040 Epoch 47/50 93/93 [==============================] - 6s - loss: 0.2977 - acc: 0.8886 - val_loss: 0.2552 - val_acc: 0.9050 Epoch 48/50 93/93 [==============================] - 6s - loss: 0.2958 - acc: 0.8883 - val_loss: 0.2574 - val_acc: 0.9062 Epoch 49/50 93/93 [==============================] - 6s - loss: 0.2888 - acc: 0.8942 - val_loss: 0.2915 - val_acc: 0.8916 Epoch 50/50 93/93 [==============================] - 6s - loss: 0.2897 - acc: 0.8912 - val_loss: 0.2569 - val_acc: 0.9041
score = cnn2.evaluate(X_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Test loss: 0.239840124524 Test accuracy: 0.9095
CNN with 4 Convolutional Layers and Batch Normalization
mean_px = X_train.mean().astype(np.float32)
std_px = X_train.std().astype(np.float32)
def norm_input(x): return (x-mean_px)/std_px
cnn3 = Sequential([
Lambda(norm_input, input_shape=(28,28, 1)),
Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape),
BatchNormalization(),
Conv2D(32, kernel_size=(3, 3), activation='relu'),
BatchNormalization(),
Dropout(0.25),
Conv2D(64, kernel_size=(3, 3), activation='relu'),
MaxPooling2D(pool_size=(2, 2)),
Dropout(0.25),
Conv2D(128, kernel_size=(3, 3), activation='relu'),
BatchNormalization(),
Dropout(0.25),
Flatten(),
Dense(512, activation='relu'),
BatchNormalization(),
Dropout(0.5),
Dense(128, activation='relu'),
BatchNormalization(),
Dropout(0.5),
Dense(10, activation='softmax')
])
cnn3.compile(loss='sparse_categorical_crossentropy',
optimizer=Adam(lr=0.001),
metrics=['accuracy'])
cnn3.fit(X_train, y_train,
batch_size=batch_size,
epochs=10,
verbose=1,
validation_data=(X_val, y_val))
Train on 48000 samples, validate on 12000 samples Epoch 1/10 48000/48000 [==============================] - 5s - loss: 0.7104 - acc: 0.7530 - val_loss: 1.9009 - val_acc: 0.5357 Epoch 2/10 48000/48000 [==============================] - 5s - loss: 0.4277 - acc: 0.8448 - val_loss: 1.8746 - val_acc: 0.5033 Epoch 3/10 48000/48000 [==============================] - 5s - loss: 0.3553 - acc: 0.8730 - val_loss: 1.6118 - val_acc: 0.5543 Epoch 4/10 48000/48000 [==============================] - 5s - loss: 0.3102 - acc: 0.8877 - val_loss: 0.8439 - val_acc: 0.7046 Epoch 5/10 48000/48000 [==============================] - 5s - loss: 0.2814 - acc: 0.8984 - val_loss: 0.4175 - val_acc: 0.8534 Epoch 6/10 48000/48000 [==============================] - 5s - loss: 0.2582 - acc: 0.9079 - val_loss: 0.2650 - val_acc: 0.9050 Epoch 7/10 48000/48000 [==============================] - 5s - loss: 0.2423 - acc: 0.9142 - val_loss: 0.2335 - val_acc: 0.9178 Epoch 8/10 48000/48000 [==============================] - 5s - loss: 0.2272 - acc: 0.9184 - val_loss: 0.2457 - val_acc: 0.9127 Epoch 9/10 48000/48000 [==============================] - 5s - loss: 0.2123 - acc: 0.9234 - val_loss: 0.2254 - val_acc: 0.9214 Epoch 10/10 48000/48000 [==============================] - 5s - loss: 0.1998 - acc: 0.9287 - val_loss: 0.2243 - val_acc: 0.9230
cnn3.optimizer.lr = 0.0001
cnn3.fit(X_train, y_train,
batch_size=batch_size,
epochs=10,
verbose=1,
validation_data=(X_val, y_val))
Train on 48000 samples, validate on 12000 samples Epoch 1/10 48000/48000 [==============================] - 5s - loss: 0.1881 - acc: 0.9314 - val_loss: 0.2101 - val_acc: 0.9270 Epoch 2/10 48000/48000 [==============================] - 5s - loss: 0.1753 - acc: 0.9362 - val_loss: 0.1913 - val_acc: 0.9338 Epoch 3/10 48000/48000 [==============================] - 5s - loss: 0.1707 - acc: 0.9380 - val_loss: 0.2064 - val_acc: 0.9291 Epoch 4/10 48000/48000 [==============================] - 5s - loss: 0.1570 - acc: 0.9438 - val_loss: 0.1977 - val_acc: 0.9312 Epoch 5/10 48000/48000 [==============================] - 5s - loss: 0.1567 - acc: 0.9428 - val_loss: 0.1824 - val_acc: 0.9376 Epoch 6/10 48000/48000 [==============================] - 5s - loss: 0.1420 - acc: 0.9480 - val_loss: 0.1919 - val_acc: 0.9358 Epoch 7/10 48000/48000 [==============================] - 5s - loss: 0.1342 - acc: 0.9506 - val_loss: 0.1856 - val_acc: 0.9373 Epoch 8/10 48000/48000 [==============================] - 5s - loss: 0.1313 - acc: 0.9519 - val_loss: 0.2004 - val_acc: 0.9328 Epoch 9/10 48000/48000 [==============================] - 5s - loss: 0.1229 - acc: 0.9562 - val_loss: 0.1984 - val_acc: 0.9350 Epoch 10/10 48000/48000 [==============================] - 5s - loss: 0.1192 - acc: 0.9552 - val_loss: 0.2071 - val_acc: 0.9354
score = cnn3.evaluate(X_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Test loss: 0.239513599713 Test accuracy: 0.9267
Data Augmentation
cnn3.fit_generator(batches, steps_per_epoch=48000//batch_size, epochs=50,
validation_data=val_batches, validation_steps=12000//batch_size, use_multiprocessing=True)
Epoch 1/50 93/93 [==============================] - 7s - loss: 0.4569 - acc: 0.8427 - val_loss: 0.3263 - val_acc: 0.8827 Epoch 2/50 93/93 [==============================] - 6s - loss: 0.3597 - acc: 0.8688 - val_loss: 0.3222 - val_acc: 0.8842 Epoch 3/50 93/93 [==============================] - 6s - loss: 0.3402 - acc: 0.8768 - val_loss: 0.2789 - val_acc: 0.8995 Epoch 4/50 93/93 [==============================] - 6s - loss: 0.3233 - acc: 0.8829 - val_loss: 0.2744 - val_acc: 0.9009 Epoch 5/50 93/93 [==============================] - 6s - loss: 0.3090 - acc: 0.8894 - val_loss: 0.2834 - val_acc: 0.8992 Epoch 6/50 93/93 [==============================] - 6s - loss: 0.3091 - acc: 0.8880 - val_loss: 0.2749 - val_acc: 0.8991 Epoch 7/50 93/93 [==============================] - 6s - loss: 0.3000 - acc: 0.8918 - val_loss: 0.2589 - val_acc: 0.9056 Epoch 8/50 93/93 [==============================] - 6s - loss: 0.2883 - acc: 0.8963 - val_loss: 0.2549 - val_acc: 0.9079 Epoch 9/50 93/93 [==============================] - 6s - loss: 0.2906 - acc: 0.8939 - val_loss: 0.2541 - val_acc: 0.9084 Epoch 10/50 93/93 [==============================] - 6s - loss: 0.2881 - acc: 0.8962 - val_loss: 0.2586 - val_acc: 0.9065 Epoch 11/50 93/93 [==============================] - 6s - loss: 0.2837 - acc: 0.8971 - val_loss: 0.2782 - val_acc: 0.9019 Epoch 12/50 93/93 [==============================] - 6s - loss: 0.2740 - acc: 0.8998 - val_loss: 0.2354 - val_acc: 0.9142 Epoch 13/50 93/93 [==============================] - 6s - loss: 0.2773 - acc: 0.8998 - val_loss: 0.2586 - val_acc: 0.9047 Epoch 14/50 93/93 [==============================] - 6s - loss: 0.2705 - acc: 0.9016 - val_loss: 0.2306 - val_acc: 0.9164 Epoch 15/50 93/93 [==============================] - 6s - loss: 0.2662 - acc: 0.9020 - val_loss: 0.2401 - val_acc: 0.9141 Epoch 16/50 93/93 [==============================] - 6s - loss: 0.2643 - acc: 0.9055 - val_loss: 0.2393 - val_acc: 0.9127 Epoch 17/50 93/93 [==============================] - 6s - loss: 0.2613 - acc: 0.9046 - val_loss: 0.2363 - val_acc: 0.9140 Epoch 18/50 93/93 [==============================] - 6s - loss: 0.2594 - acc: 0.9070 - val_loss: 0.2379 - val_acc: 0.9183 Epoch 19/50 93/93 [==============================] - 6s - loss: 0.2566 - acc: 0.9072 - val_loss: 0.2533 - val_acc: 0.9110 Epoch 20/50 93/93 [==============================] - 6s - loss: 0.2528 - acc: 0.9079 - val_loss: 0.2258 - val_acc: 0.9195 Epoch 21/50 93/93 [==============================] - 6s - loss: 0.2514 - acc: 0.9089 - val_loss: 0.2231 - val_acc: 0.9193 Epoch 22/50 93/93 [==============================] - 6s - loss: 0.2485 - acc: 0.9090 - val_loss: 0.2231 - val_acc: 0.9219 Epoch 23/50 93/93 [==============================] - 6s - loss: 0.2475 - acc: 0.9097 - val_loss: 0.2255 - val_acc: 0.9160 Epoch 24/50 93/93 [==============================] - 6s - loss: 0.2506 - acc: 0.9087 - val_loss: 0.2193 - val_acc: 0.9214 Epoch 25/50 93/93 [==============================] - 6s - loss: 0.2423 - acc: 0.9122 - val_loss: 0.2204 - val_acc: 0.9198 Epoch 26/50 93/93 [==============================] - 6s - loss: 0.2466 - acc: 0.9114 - val_loss: 0.2260 - val_acc: 0.9184 Epoch 27/50 93/93 [==============================] - 6s - loss: 0.2466 - acc: 0.9109 - val_loss: 0.2190 - val_acc: 0.9198 Epoch 28/50 93/93 [==============================] - 6s - loss: 0.2416 - acc: 0.9131 - val_loss: 0.2286 - val_acc: 0.9179 Epoch 29/50 93/93 [==============================] - 6s - loss: 0.2394 - acc: 0.9131 - val_loss: 0.2235 - val_acc: 0.9209 Epoch 30/50 93/93 [==============================] - 6s - loss: 0.2308 - acc: 0.9162 - val_loss: 0.2232 - val_acc: 0.9185 Epoch 31/50 93/93 [==============================] - 6s - loss: 0.2370 - acc: 0.9134 - val_loss: 0.2037 - val_acc: 0.9250 Epoch 32/50 93/93 [==============================] - 6s - loss: 0.2301 - acc: 0.9154 - val_loss: 0.2169 - val_acc: 0.9228 Epoch 33/50 93/93 [==============================] - 6s - loss: 0.2315 - acc: 0.9155 - val_loss: 0.2172 - val_acc: 0.9211 Epoch 34/50 93/93 [==============================] - 6s - loss: 0.2280 - acc: 0.9172 - val_loss: 0.2191 - val_acc: 0.9213 Epoch 35/50 93/93 [==============================] - 6s - loss: 0.2302 - acc: 0.9157 - val_loss: 0.2095 - val_acc: 0.9261 Epoch 36/50 93/93 [==============================] - 6s - loss: 0.2227 - acc: 0.9192 - val_loss: 0.2259 - val_acc: 0.9201 Epoch 37/50 93/93 [==============================] - 6s - loss: 0.2275 - acc: 0.9164 - val_loss: 0.2080 - val_acc: 0.9260 Epoch 38/50 93/93 [==============================] - 6s - loss: 0.2257 - acc: 0.9176 - val_loss: 0.2092 - val_acc: 0.9281 Epoch 39/50 93/93 [==============================] - 6s - loss: 0.2234 - acc: 0.9197 - val_loss: 0.2032 - val_acc: 0.9294 Epoch 40/50 93/93 [==============================] - 6s - loss: 0.2223 - acc: 0.9191 - val_loss: 0.2255 - val_acc: 0.9201 Epoch 41/50 93/93 [==============================] - 6s - loss: 0.2234 - acc: 0.9208 - val_loss: 0.2109 - val_acc: 0.9254 Epoch 42/50 93/93 [==============================] - 6s - loss: 0.2185 - acc: 0.9216 - val_loss: 0.2096 - val_acc: 0.9240 Epoch 43/50 93/93 [==============================] - 6s - loss: 0.2120 - acc: 0.9232 - val_loss: 0.2235 - val_acc: 0.9230 Epoch 44/50 93/93 [==============================] - 6s - loss: 0.2155 - acc: 0.9213 - val_loss: 0.2136 - val_acc: 0.9251 Epoch 45/50 93/93 [==============================] - 6s - loss: 0.2165 - acc: 0.9223 - val_loss: 0.2199 - val_acc: 0.9226 Epoch 46/50 93/93 [==============================] - 6s - loss: 0.2168 - acc: 0.9206 - val_loss: 0.2117 - val_acc: 0.9243 Epoch 47/50 93/93 [==============================] - 6s - loss: 0.2140 - acc: 0.9228 - val_loss: 0.2175 - val_acc: 0.9243 Epoch 48/50 93/93 [==============================] - 6s - loss: 0.2112 - acc: 0.9234 - val_loss: 0.2141 - val_acc: 0.9249 Epoch 49/50 93/93 [==============================] - 6s - loss: 0.2082 - acc: 0.9245 - val_loss: 0.2084 - val_acc: 0.9247 Epoch 50/50 93/93 [==============================] - 6s - loss: 0.2127 - acc: 0.9222 - val_loss: 0.2031 - val_acc: 0.9275
score = cnn3.evaluate(X_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Test loss: 0.188260396481 Test accuracy: 0.9354
VGG Like Model
cnn4 = Sequential([
Lambda(norm_input, input_shape=(28,28, 1)),
Conv2D(32, kernel_size=(3, 3), activation='relu', padding='same', input_shape=input_shape),
Conv2D(32, kernel_size=(3, 3), activation='relu', padding='same'),
MaxPooling2D(pool_size=(2, 2)),
Conv2D(64, kernel_size=(3, 3), activation='relu', padding='same'),
Conv2D(64, kernel_size=(3, 3), activation='relu', padding='same'),
MaxPooling2D(pool_size=(2, 2)),
Conv2D(128, kernel_size=(3, 3), activation='relu', padding='same'),
Conv2D(128, kernel_size=(3, 3), activation='relu', padding='same'),
MaxPooling2D(pool_size=(2, 2)),
Conv2D(256, kernel_size=(3, 3), activation='relu', padding='same'),
Conv2D(256, kernel_size=(3, 3), activation='relu', padding='same'),
Conv2D(256, kernel_size=(3, 3), activation='relu', padding='same'),
MaxPooling2D(pool_size=(2, 2)),
Flatten(),
Dense(512, activation='relu'),
Dropout(0.5),
Dense(512, activation='relu'),
Dropout(0.5),
Dense(10, activation='softmax')
])
cnn4.compile(loss='sparse_categorical_crossentropy',
optimizer=Adam(lr=0.001),
metrics=['accuracy'])
cnn4.fit(X_train, y_train,
batch_size=batch_size,
epochs=10,
verbose=1,
validation_data=(X_val, y_val))
Train on 48000 samples, validate on 12000 samples Epoch 1/10 48000/48000 [==============================] - 4s - loss: 1.1620 - acc: 0.5509 - val_loss: 0.5807 - val_acc: 0.7721 Epoch 2/10 48000/48000 [==============================] - 3s - loss: 0.5223 - acc: 0.8059 - val_loss: 0.4136 - val_acc: 0.8458 Epoch 3/10 48000/48000 [==============================] - 3s - loss: 0.3864 - acc: 0.8613 - val_loss: 0.2957 - val_acc: 0.8952 Epoch 4/10 48000/48000 [==============================] - 3s - loss: 0.3172 - acc: 0.8871 - val_loss: 0.3052 - val_acc: 0.8885 Epoch 5/10 48000/48000 [==============================] - 3s - loss: 0.2787 - acc: 0.9008 - val_loss: 0.2342 - val_acc: 0.9158 Epoch 6/10 48000/48000 [==============================] - 3s - loss: 0.2430 - acc: 0.9131 - val_loss: 0.2404 - val_acc: 0.9127 Epoch 7/10 48000/48000 [==============================] - 3s - loss: 0.2172 - acc: 0.9227 - val_loss: 0.2469 - val_acc: 0.9091 Epoch 8/10 48000/48000 [==============================] - 3s - loss: 0.1968 - acc: 0.9295 - val_loss: 0.2172 - val_acc: 0.9247 Epoch 9/10 48000/48000 [==============================] - 3s - loss: 0.1775 - acc: 0.9363 - val_loss: 0.2124 - val_acc: 0.9259 Epoch 10/10 48000/48000 [==============================] - 3s - loss: 0.1616 - acc: 0.9430 - val_loss: 0.2285 - val_acc: 0.9232
cnn4.optimizer.lr = 0.0001
cnn4.fit(X_train, y_train,
batch_size=batch_size,
epochs=10,
verbose=1,
validation_data=(X_val, y_val))
Train on 48000 samples, validate on 12000 samples Epoch 1/10 48000/48000 [==============================] - 3s - loss: 0.1584 - acc: 0.9442 - val_loss: 0.2155 - val_acc: 0.9267 Epoch 2/10 48000/48000 [==============================] - 3s - loss: 0.1319 - acc: 0.9526 - val_loss: 0.2024 - val_acc: 0.9305 Epoch 3/10 48000/48000 [==============================] - 3s - loss: 0.1228 - acc: 0.9567 - val_loss: 0.2117 - val_acc: 0.9301 Epoch 4/10 48000/48000 [==============================] - 3s - loss: 0.1096 - acc: 0.9611 - val_loss: 0.2452 - val_acc: 0.9255 Epoch 5/10 48000/48000 [==============================] - 3s - loss: 0.0986 - acc: 0.9651 - val_loss: 0.2530 - val_acc: 0.9255 Epoch 6/10 48000/48000 [==============================] - 3s - loss: 0.0896 - acc: 0.9675 - val_loss: 0.2428 - val_acc: 0.9273 Epoch 7/10 48000/48000 [==============================] - 3s - loss: 0.0835 - acc: 0.9711 - val_loss: 0.2585 - val_acc: 0.9183 Epoch 8/10 48000/48000 [==============================] - 3s - loss: 0.0807 - acc: 0.9721 - val_loss: 0.2648 - val_acc: 0.9243 Epoch 9/10 48000/48000 [==============================] - 3s - loss: 0.0709 - acc: 0.9757 - val_loss: 0.2641 - val_acc: 0.9246 Epoch 10/10 48000/48000 [==============================] - 3s - loss: 0.0609 - acc: 0.9792 - val_loss: 0.2733 - val_acc: 0.9290
score = cnn4.evaluate(X_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Test loss: 0.334026500632 Test accuracy: 0.9208
Data Augmentation
cnn4.fit_generator(batches, steps_per_epoch=48000//batch_size, epochs=50,
validation_data=val_batches, validation_steps=12000//batch_size, use_multiprocessing=True)
Epoch 1/50 93/93 [==============================] - 7s - loss: 0.3967 - acc: 0.8585 - val_loss: 0.3305 - val_acc: 0.8817 Epoch 2/50 93/93 [==============================] - 6s - loss: 0.3177 - acc: 0.8850 - val_loss: 0.2868 - val_acc: 0.8943 Epoch 3/50 93/93 [==============================] - 6s - loss: 0.2959 - acc: 0.8916 - val_loss: 0.2782 - val_acc: 0.8997 Epoch 4/50 93/93 [==============================] - 6s - loss: 0.2750 - acc: 0.8993 - val_loss: 0.2831 - val_acc: 0.8998 Epoch 5/50 93/93 [==============================] - 6s - loss: 0.2683 - acc: 0.9019 - val_loss: 0.2666 - val_acc: 0.9006 Epoch 6/50 93/93 [==============================] - 6s - loss: 0.2647 - acc: 0.9048 - val_loss: 0.2718 - val_acc: 0.9016 Epoch 7/50 93/93 [==============================] - 6s - loss: 0.2559 - acc: 0.9077 - val_loss: 0.2533 - val_acc: 0.9083 Epoch 8/50 93/93 [==============================] - 6s - loss: 0.2460 - acc: 0.9118 - val_loss: 0.2505 - val_acc: 0.9098 Epoch 9/50 93/93 [==============================] - 6s - loss: 0.2431 - acc: 0.9110 - val_loss: 0.2588 - val_acc: 0.9079 Epoch 10/50 93/93 [==============================] - 6s - loss: 0.2345 - acc: 0.9147 - val_loss: 0.2492 - val_acc: 0.9082 Epoch 11/50 93/93 [==============================] - 6s - loss: 0.2308 - acc: 0.9148 - val_loss: 0.2551 - val_acc: 0.9057 Epoch 12/50 93/93 [==============================] - 6s - loss: 0.2293 - acc: 0.9151 - val_loss: 0.2639 - val_acc: 0.9021 Epoch 13/50 93/93 [==============================] - 6s - loss: 0.2217 - acc: 0.9187 - val_loss: 0.2338 - val_acc: 0.9147 Epoch 14/50 93/93 [==============================] - 6s - loss: 0.2196 - acc: 0.9192 - val_loss: 0.2344 - val_acc: 0.9149 Epoch 15/50 93/93 [==============================] - 6s - loss: 0.2181 - acc: 0.9213 - val_loss: 0.2492 - val_acc: 0.9109 Epoch 16/50 93/93 [==============================] - 6s - loss: 0.2144 - acc: 0.9224 - val_loss: 0.2393 - val_acc: 0.9164 Epoch 17/50 93/93 [==============================] - 6s - loss: 0.2114 - acc: 0.9228 - val_loss: 0.2315 - val_acc: 0.9151 Epoch 18/50 93/93 [==============================] - 6s - loss: 0.2052 - acc: 0.9261 - val_loss: 0.2350 - val_acc: 0.9182 Epoch 19/50 93/93 [==============================] - 6s - loss: 0.2023 - acc: 0.9247 - val_loss: 0.2437 - val_acc: 0.9113 Epoch 20/50 93/93 [==============================] - 6s - loss: 0.2019 - acc: 0.9258 - val_loss: 0.2239 - val_acc: 0.9179 Epoch 21/50 93/93 [==============================] - 6s - loss: 0.1971 - acc: 0.9275 - val_loss: 0.2308 - val_acc: 0.9188 Epoch 22/50 93/93 [==============================] - 6s - loss: 0.1920 - acc: 0.9306 - val_loss: 0.2253 - val_acc: 0.9204 Epoch 23/50 93/93 [==============================] - 6s - loss: 0.1959 - acc: 0.9270 - val_loss: 0.2286 - val_acc: 0.9192 Epoch 24/50 93/93 [==============================] - 6s - loss: 0.1920 - acc: 0.9305 - val_loss: 0.2180 - val_acc: 0.9247 Epoch 25/50 93/93 [==============================] - 6s - loss: 0.1841 - acc: 0.9336 - val_loss: 0.2269 - val_acc: 0.9213 Epoch 26/50 93/93 [==============================] - 6s - loss: 0.1821 - acc: 0.9338 - val_loss: 0.2240 - val_acc: 0.9203 Epoch 27/50 93/93 [==============================] - 6s - loss: 0.1828 - acc: 0.9332 - val_loss: 0.2176 - val_acc: 0.9240 Epoch 28/50 93/93 [==============================] - 6s - loss: 0.1797 - acc: 0.9347 - val_loss: 0.2208 - val_acc: 0.9231 Epoch 29/50 93/93 [==============================] - 6s - loss: 0.1759 - acc: 0.9353 - val_loss: 0.2167 - val_acc: 0.9243 Epoch 30/50 93/93 [==============================] - 6s - loss: 0.1742 - acc: 0.9359 - val_loss: 0.2223 - val_acc: 0.9212 Epoch 31/50 93/93 [==============================] - 6s - loss: 0.1770 - acc: 0.9359 - val_loss: 0.2138 - val_acc: 0.9252 Epoch 32/50 93/93 [==============================] - 6s - loss: 0.1741 - acc: 0.9366 - val_loss: 0.2222 - val_acc: 0.9243 Epoch 33/50 93/93 [==============================] - 6s - loss: 0.1761 - acc: 0.9362 - val_loss: 0.2237 - val_acc: 0.9243 Epoch 34/50 93/93 [==============================] - 6s - loss: 0.1721 - acc: 0.9367 - val_loss: 0.2379 - val_acc: 0.9192 Epoch 35/50 93/93 [==============================] - 6s - loss: 0.1700 - acc: 0.9388 - val_loss: 0.2586 - val_acc: 0.9165 Epoch 36/50 93/93 [==============================] - 6s - loss: 0.1688 - acc: 0.9379 - val_loss: 0.2301 - val_acc: 0.9246 Epoch 37/50 93/93 [==============================] - 6s - loss: 0.1623 - acc: 0.9408 - val_loss: 0.2289 - val_acc: 0.9229 Epoch 38/50 93/93 [==============================] - 6s - loss: 0.1599 - acc: 0.9416 - val_loss: 0.2339 - val_acc: 0.9186 Epoch 39/50 93/93 [==============================] - 6s - loss: 0.1685 - acc: 0.9394 - val_loss: 0.2205 - val_acc: 0.9230 Epoch 40/50 93/93 [==============================] - 6s - loss: 0.1547 - acc: 0.9433 - val_loss: 0.2132 - val_acc: 0.9253 Epoch 41/50 93/93 [==============================] - 6s - loss: 0.1576 - acc: 0.9417 - val_loss: 0.2412 - val_acc: 0.9207 Epoch 42/50 93/93 [==============================] - 6s - loss: 0.1611 - acc: 0.9409 - val_loss: 0.2170 - val_acc: 0.9265 Epoch 43/50 93/93 [==============================] - 6s - loss: 0.1576 - acc: 0.9423 - val_loss: 0.2217 - val_acc: 0.9259 Epoch 44/50 93/93 [==============================] - 7s - loss: 0.1589 - acc: 0.9422 - val_loss: 0.2390 - val_acc: 0.9197 Epoch 45/50 93/93 [==============================] - 6s - loss: 0.1543 - acc: 0.9445 - val_loss: 0.2337 - val_acc: 0.9207 Epoch 46/50 93/93 [==============================] - 6s - loss: 0.1480 - acc: 0.9457 - val_loss: 0.2172 - val_acc: 0.9267 Epoch 47/50 93/93 [==============================] - 6s - loss: 0.1498 - acc: 0.9436 - val_loss: 0.2226 - val_acc: 0.9230 Epoch 48/50 93/93 [==============================] - 6s - loss: 0.1492 - acc: 0.9463 - val_loss: 0.2413 - val_acc: 0.9227 Epoch 49/50 93/93 [==============================] - 6s - loss: 0.1502 - acc: 0.9462 - val_loss: 0.2225 - val_acc: 0.9283 Epoch 50/50 93/93 [==============================] - 6s - loss: 0.1499 - acc: 0.9453 - val_loss: 0.2208 - val_acc: 0.9260
score = cnn4.evaluate(X_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Test loss: 0.193522232082 Test accuracy: 0.9359
VGG Like Model With Batchnorm
cnn5 = Sequential([
Lambda(norm_input, input_shape=(28,28, 1)),
Conv2D(32, kernel_size=(3, 3), activation='relu', padding='same', input_shape=input_shape),
Conv2D(32, kernel_size=(3, 3), activation='relu', padding='same'),
BatchNormalization(),
Dropout(0.25),
Conv2D(64, kernel_size=(3, 3), activation='relu', padding='same'),
Conv2D(64, kernel_size=(3, 3), activation='relu', padding='same'),
MaxPooling2D(pool_size=(2, 2)),
Dropout(0.25),
Conv2D(128, kernel_size=(3, 3), activation='relu', padding='same'),
Conv2D(128, kernel_size=(3, 3), activation='relu', padding='same'),
BatchNormalization(),
Dropout(0.25),
Conv2D(256, kernel_size=(3, 3), activation='relu', padding='same'),
Conv2D(256, kernel_size=(3, 3), activation='relu', padding='same'),
Conv2D(256, kernel_size=(3, 3), activation='relu', padding='same'),
MaxPooling2D(pool_size=(2, 2)),
Flatten(),
Dense(512, activation='relu'),
BatchNormalization(),
Dropout(0.5),
Dense(512, activation='relu'),
BatchNormalization(),
Dropout(0.5),
Dense(10, activation='softmax')
])
cnn5.compile(loss='sparse_categorical_crossentropy',
optimizer=Adam(lr=0.001),
metrics=['accuracy'])
cnn5.fit(X_train, y_train,
batch_size=batch_size,
epochs=10,
verbose=1,
validation_data=(X_val, y_val))
Train on 48000 samples, validate on 12000 samples Epoch 1/10 48000/48000 [==============================] - 17s - loss: 0.8053 - acc: 0.7310 - val_loss: 2.8340 - val_acc: 0.1061 Epoch 2/10 48000/48000 [==============================] - 16s - loss: 0.4330 - acc: 0.8426 - val_loss: 3.4900 - val_acc: 0.3552 Epoch 3/10 48000/48000 [==============================] - 16s - loss: 0.3449 - acc: 0.8752 - val_loss: 4.8988 - val_acc: 0.1126 Epoch 4/10 48000/48000 [==============================] - 16s - loss: 0.2972 - acc: 0.8927 - val_loss: 2.3724 - val_acc: 0.4153 Epoch 5/10 48000/48000 [==============================] - 16s - loss: 0.2636 - acc: 0.9033 - val_loss: 0.3967 - val_acc: 0.8660 Epoch 6/10 48000/48000 [==============================] - 16s - loss: 0.2409 - acc: 0.9116 - val_loss: 0.4278 - val_acc: 0.8573 Epoch 7/10 48000/48000 [==============================] - 16s - loss: 0.2278 - acc: 0.9169 - val_loss: 0.2007 - val_acc: 0.9286 Epoch 8/10 48000/48000 [==============================] - 16s - loss: 0.2058 - acc: 0.9254 - val_loss: 0.1954 - val_acc: 0.9310 Epoch 9/10 48000/48000 [==============================] - 16s - loss: 0.1975 - acc: 0.9268 - val_loss: 0.2283 - val_acc: 0.9186 Epoch 10/10 48000/48000 [==============================] - 16s - loss: 0.1852 - acc: 0.9319 - val_loss: 0.1994 - val_acc: 0.9333
cnn5.optimizer.lr = 0.0001
cnn5.fit(X_train, y_train,
batch_size=batch_size,
epochs=10,
verbose=1,
validation_data=(X_val, y_val))
Train on 48000 samples, validate on 12000 samples Epoch 1/10 48000/48000 [==============================] - 16s - loss: 0.1748 - acc: 0.9360 - val_loss: 0.1984 - val_acc: 0.9331 Epoch 2/10 48000/48000 [==============================] - 16s - loss: 0.1652 - acc: 0.9395 - val_loss: 0.1965 - val_acc: 0.9376 Epoch 3/10 48000/48000 [==============================] - 16s - loss: 0.1572 - acc: 0.9425 - val_loss: 0.1781 - val_acc: 0.9401 Epoch 4/10 48000/48000 [==============================] - 16s - loss: 0.1454 - acc: 0.9464 - val_loss: 0.1759 - val_acc: 0.9392 Epoch 5/10 48000/48000 [==============================] - 16s - loss: 0.1350 - acc: 0.9499 - val_loss: 0.2181 - val_acc: 0.9338 Epoch 6/10 48000/48000 [==============================] - 16s - loss: 0.1277 - acc: 0.9527 - val_loss: 0.1997 - val_acc: 0.9358 Epoch 7/10 48000/48000 [==============================] - 16s - loss: 0.1226 - acc: 0.9551 - val_loss: 0.1930 - val_acc: 0.9394 Epoch 8/10 48000/48000 [==============================] - 16s - loss: 0.1119 - acc: 0.9577 - val_loss: 0.2257 - val_acc: 0.9315 Epoch 9/10 48000/48000 [==============================] - 16s - loss: 0.1055 - acc: 0.9606 - val_loss: 0.2066 - val_acc: 0.9375 Epoch 10/10 48000/48000 [==============================] - 16s - loss: 0.0970 - acc: 0.9645 - val_loss: 0.1986 - val_acc: 0.9374
score = cnn5.evaluate(X_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Test loss: 0.227945802512 Test accuracy: 0.9296
Data Augmentation
cnn5.fit_generator(batches, steps_per_epoch=48000//batch_size, epochs=50,
validation_data=val_batches, validation_steps=12000//batch_size, use_multiprocessing=True)
Epoch 1/50 93/93 [==============================] - 16s - loss: 0.3573 - acc: 0.8742 - val_loss: 0.3032 - val_acc: 0.8989 Epoch 2/50 93/93 [==============================] - 16s - loss: 0.2950 - acc: 0.8938 - val_loss: 0.2749 - val_acc: 0.9000 Epoch 3/50 93/93 [==============================] - 16s - loss: 0.2756 - acc: 0.8995 - val_loss: 0.3022 - val_acc: 0.8914 Epoch 4/50 93/93 [==============================] - 16s - loss: 0.2672 - acc: 0.9036 - val_loss: 0.2442 - val_acc: 0.9126 Epoch 5/50 93/93 [==============================] - 16s - loss: 0.2559 - acc: 0.9067 - val_loss: 0.2618 - val_acc: 0.9051 Epoch 6/50 93/93 [==============================] - 16s - loss: 0.2493 - acc: 0.9094 - val_loss: 0.2671 - val_acc: 0.9079 Epoch 7/50 93/93 [==============================] - 16s - loss: 0.2421 - acc: 0.9113 - val_loss: 0.2532 - val_acc: 0.9067 Epoch 8/50 93/93 [==============================] - 16s - loss: 0.2375 - acc: 0.9128 - val_loss: 0.2315 - val_acc: 0.9194 Epoch 9/50 93/93 [==============================] - 16s - loss: 0.2337 - acc: 0.9141 - val_loss: 0.2346 - val_acc: 0.9173 Epoch 10/50 93/93 [==============================] - 16s - loss: 0.2290 - acc: 0.9152 - val_loss: 0.2551 - val_acc: 0.9107 Epoch 11/50 93/93 [==============================] - 16s - loss: 0.2186 - acc: 0.9194 - val_loss: 0.2457 - val_acc: 0.9092 Epoch 12/50 93/93 [==============================] - 16s - loss: 0.2200 - acc: 0.9189 - val_loss: 0.2460 - val_acc: 0.9136 Epoch 13/50 93/93 [==============================] - 16s - loss: 0.2124 - acc: 0.9217 - val_loss: 0.2248 - val_acc: 0.9219 Epoch 14/50 93/93 [==============================] - 16s - loss: 0.2141 - acc: 0.9219 - val_loss: 0.2121 - val_acc: 0.9239 Epoch 15/50 93/93 [==============================] - 16s - loss: 0.2051 - acc: 0.9241 - val_loss: 0.2335 - val_acc: 0.9191 Epoch 16/50 93/93 [==============================] - 16s - loss: 0.2059 - acc: 0.9237 - val_loss: 0.2222 - val_acc: 0.9214 Epoch 17/50 93/93 [==============================] - 16s - loss: 0.2066 - acc: 0.9246 - val_loss: 0.2112 - val_acc: 0.9231 Epoch 18/50 93/93 [==============================] - 16s - loss: 0.1977 - acc: 0.9272 - val_loss: 0.2345 - val_acc: 0.9187 Epoch 19/50 93/93 [==============================] - 16s - loss: 0.1955 - acc: 0.9270 - val_loss: 0.1980 - val_acc: 0.9296 Epoch 20/50 93/93 [==============================] - 16s - loss: 0.1965 - acc: 0.9284 - val_loss: 0.2066 - val_acc: 0.9281 Epoch 21/50 93/93 [==============================] - 16s - loss: 0.1901 - acc: 0.9307 - val_loss: 0.2169 - val_acc: 0.9251 Epoch 22/50 93/93 [==============================] - 16s - loss: 0.1913 - acc: 0.9296 - val_loss: 0.2052 - val_acc: 0.9277 Epoch 23/50 93/93 [==============================] - 16s - loss: 0.1824 - acc: 0.9333 - val_loss: 0.2103 - val_acc: 0.9266 Epoch 24/50 93/93 [==============================] - 16s - loss: 0.1897 - acc: 0.9308 - val_loss: 0.2338 - val_acc: 0.9162 Epoch 25/50 93/93 [==============================] - 16s - loss: 0.1798 - acc: 0.9346 - val_loss: 0.2226 - val_acc: 0.9222 Epoch 26/50 93/93 [==============================] - 16s - loss: 0.1856 - acc: 0.9323 - val_loss: 0.2038 - val_acc: 0.9277 Epoch 27/50 93/93 [==============================] - 16s - loss: 0.1815 - acc: 0.9346 - val_loss: 0.2009 - val_acc: 0.9314 Epoch 28/50 93/93 [==============================] - 16s - loss: 0.1704 - acc: 0.9374 - val_loss: 0.2132 - val_acc: 0.9288 Epoch 29/50 93/93 [==============================] - 16s - loss: 0.1742 - acc: 0.9362 - val_loss: 0.2063 - val_acc: 0.9265 Epoch 30/50 93/93 [==============================] - 16s - loss: 0.1670 - acc: 0.9390 - val_loss: 0.2060 - val_acc: 0.9282 Epoch 31/50 93/93 [==============================] - 16s - loss: 0.1638 - acc: 0.9386 - val_loss: 0.1994 - val_acc: 0.9351 Epoch 32/50 93/93 [==============================] - 16s - loss: 0.1666 - acc: 0.9396 - val_loss: 0.2001 - val_acc: 0.9327 Epoch 33/50 93/93 [==============================] - 16s - loss: 0.1610 - acc: 0.9406 - val_loss: 0.2188 - val_acc: 0.9240 Epoch 34/50 93/93 [==============================] - 16s - loss: 0.1623 - acc: 0.9409 - val_loss: 0.1985 - val_acc: 0.9313 Epoch 35/50 93/93 [==============================] - 16s - loss: 0.1562 - acc: 0.9429 - val_loss: 0.2299 - val_acc: 0.9256 Epoch 36/50 93/93 [==============================] - 16s - loss: 0.1640 - acc: 0.9402 - val_loss: 0.2170 - val_acc: 0.9226 Epoch 37/50 93/93 [==============================] - 16s - loss: 0.1560 - acc: 0.9429 - val_loss: 0.1942 - val_acc: 0.9337 Epoch 38/50 93/93 [==============================] - 16s - loss: 0.1601 - acc: 0.9414 - val_loss: 0.2054 - val_acc: 0.9302 Epoch 39/50 93/93 [==============================] - 16s - loss: 0.1503 - acc: 0.9444 - val_loss: 0.1953 - val_acc: 0.9323 Epoch 40/50 93/93 [==============================] - 16s - loss: 0.1502 - acc: 0.9443 - val_loss: 0.2039 - val_acc: 0.9342 Epoch 41/50 93/93 [==============================] - 16s - loss: 0.1455 - acc: 0.9459 - val_loss: 0.2034 - val_acc: 0.9319 Epoch 42/50 93/93 [==============================] - 16s - loss: 0.1521 - acc: 0.9439 - val_loss: 0.1959 - val_acc: 0.9346 Epoch 43/50 93/93 [==============================] - 16s - loss: 0.1422 - acc: 0.9482 - val_loss: 0.2070 - val_acc: 0.9322 Epoch 44/50 93/93 [==============================] - 16s - loss: 0.1407 - acc: 0.9479 - val_loss: 0.2077 - val_acc: 0.9314 Epoch 45/50 93/93 [==============================] - 16s - loss: 0.1381 - acc: 0.9498 - val_loss: 0.2056 - val_acc: 0.9327 Epoch 46/50 93/93 [==============================] - 16s - loss: 0.1377 - acc: 0.9490 - val_loss: 0.2174 - val_acc: 0.9277 Epoch 47/50 93/93 [==============================] - 16s - loss: 0.1374 - acc: 0.9490 - val_loss: 0.2012 - val_acc: 0.9341 Epoch 48/50 93/93 [==============================] - 16s - loss: 0.1331 - acc: 0.9508 - val_loss: 0.2001 - val_acc: 0.9338 Epoch 49/50 93/93 [==============================] - 16s - loss: 0.1390 - acc: 0.9493 - val_loss: 0.1798 - val_acc: 0.9403 Epoch 50/50 93/93 [==============================] - 16s - loss: 0.1328 - acc: 0.9514 - val_loss: 0.1904 - val_acc: 0.9366
score = cnn5.evaluate(X_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Test loss: 0.177969511382 Test accuracy: 0.9401
You can find the original notebook on my Github